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UNIT 1-    Normal Subgroups

Let G be  an  abelian  group,  the  composition  in G being  denoted  multiplicatively.

Let H be  any  subgroup  of G.  If x is  an  element  of G,  then Hx is  a  right  coset

of H in G and xH is  a  left  coset  of H in G.  Also G is  abelian,  therefore  we  must

have Hx=xH x G∀ ∈ . However, it is possible that G is not abelian, yet it is possesses a

subgroup H such that Hx=xH x G∀ ∈ . Such subgroups of G fall under the category of

normal subgroups, and they are very important.

Definition

A  subgroup N of  a  group G is  said  to  be  a  normal  subgroup  of G if  for

every x G∈  and for every n N∈ , xnx–1 N∈ .

From this definition we can immediately conclude that N is a normal subgroup of  

G if and only if

xNx–1 N x G⊂ ∀ ∈

Theorems of Normal Subgroups

Theorem 1: A subgroup N of a group G is normal if and only if  xNx–1 = N x∀  G∈ .

Proof: 

Let xNx–1=N x G∀ ∈ , then xNx–1 ⊂ N ∀ x G∈ . Therefore N is a normal subgroup of G.

Conversely, let N be a normal subgroup of G. Then

xNx–1 ⊂ N x G–––(i)∀ ∈

Also  x ∈ G ⇒ x–1 ∈ G. Therefore we have

x–1N(x–1)–1 N⊂  x G∀ ∈  x⇒ –1Nx ⊂ N x G∀ ∈

x(x⇒ –1nx)x–1 xNx⊂ –1 x G∀ ∈

N x⇒ ⊂ –1Nx x G–––(ii)∀ ∈

From (i) and (ii) we can conclude that  xNx–1=N x G∀ ∈
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Theorem 2: A subgroup N of a group G is a normal subgroup of G if  and only if

each left coset of N in G is a right coset of N in G.

Proof: Let N be a normal subgroup of G then

xNx–1=N x G∀ ∈  (xNx–1)x=Nx x G⇒ ∀ ∈

xN=Nx x G⇒ ∀ ∈ ⇒ each left coset xN is the coset Nx

Conversely, let each left coset of N in G be a right coset of N in G. This means that

if x is any element of G, then the left coset xN is also a right coset. Now e N∈ , and

therefore xe=x xN∈ . So x must also belong to that right coset which is equal to left

coset   xN. But x is an element of the right coset Nx, and two right cosets are either

disjointed or identical, i.e. if two right cosets contain one common element then they

are  identical.  Therefore Nx is  the  unique  right  coset  which  is  equal  to  the  left

coset xN.

Therefore, we have    xN=Nx x G∀ ∈  xNx–1=Nxx–1 x G⇒ ∀ ∈

xNx–1=N x G⇒ ∀ ∈

⇒ N is normal a subgroup of G.

Theorem 3: A subgroup N of a group G is a normal subgroup of G if and only if the

product of two right cosets of N in G is again a right coset of N in G.

Theorem  4: The  intersection of  two  normal  subgroups  of  a  group  is  a  normal

subgroup.

Center of a Group

Definition: The set Z of all those elements of a group G which commute with every

element of G is called the center of the group G. Symbolically

Z={z G:zx∈  = xz x G}⇒ ∈

Theorem: The center Z of a group G is a normal subgroup of G.

Proof:

We have Z={z G:zx∈  = xz x G}∀ ∈ . First we shall prove that Z is a subgroup of G.
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Let z1,z2 Z∈ , then z1x = xz1 and  z2x = xz2 for all  x G∈

We have z2x = xz2, for all  x G∈

z⇒ 2
–1(z2x)z2–1  =z2–1(xz2)z2–1 xz⇒ 2

–1=z2–1x x G∀ ∈

z⇒ 2
–1 Z∈

Now (z1z2–1)x =z1(z2–1x)= z1(xz2–1) = (z1x)z2–1 = (xz1)z2–1 = x(z1z2–1) z⇒ 1z2–1 Z∈

Thus,   z1,z2 Z∈  ⇒ z1z2–1 Z∈

Therefore, Z is a subgroup of G.

Now, we shall show that Z is a normal subgroup of G. Let x G∈  and z Z∈ , then

xzx–1=(xz)x–1=(zx)x–1 = z Z∈

Thus, x G∈ , z∈Z ⇒xzx–1∈Z

Quotient Groups

Definition: If G is a group and N is a normal subgroup of group G, then the set G|

N of all cosets of N in G is a group with respect to the multiplication of cosets. It is

called  the  quotient  group or  factor  group of G by N.  The  identity  element  of  the

quotient group G|N by N.

Theorem: The set  of  all  cosets  of  a  normal  subgroup is  a  group with  respect  to

multiplication of complexes as the composition.

Proof:

Let N be a normal subgroup of a group G. Since N is normal in G, therefore each

right coset will be equal to the corresponding left coset.

Thus there is no distinction between right and left cosets and we shall simply call

them cosets. Let G|N be the collection of all cosets of N in G, i.e. let

G|N={Na:a G}∈

Closure Property: Let a,b G∈ , then (Na)(Nb)=N(aN)b=N(Na)b=NNab=Nab
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Since ab G∈ ,  therefore Nab is  also  a  coset  of N in G.  So Nab G|N∈ .  Thus G|N is

closed with respect to coset multiplication.

Associativity: Let a,b,c G∈ . Then Na,Nb,Nc G|N∈ . We have

Na[(Nb)(Nc)]=Na(Nbc)=Na(bc)=N(ab)c=(Nab)Nc 

=[(Na)(Nb)]Nc

Thus the product of G|N satisfies the associative law.

Existence of Identity: 

We have N=Ne G|N∈ . Also if Na is any element of G|N, then

N(Na)=(Ne)(Na)=Nea=Na(Na)N=(Na)(Ne)=Nae=Na

Therefore the coset N is the identity element.

Existence of Inverse: 

Let Na G|N∈ , then Na–1 G|N∈ . We have

(Na)(Na–1) = Naa–1 = Ne = N(Na–1)(Na) = Na–1a = Ne = N

Therefore the coset Na–1 is the inverse of Na. Thus each element of G|N possesses an

inverse.

Hence G|N is a group with respect to the product of cosets.

Examples of Quotient Groups

Example 1: If H is a normal subgroup of a finite group G, then prove that

o(G|H)=o(G)o(H)

Solution: o(G|H) = number of distinct right (or left) cosets of H in G, as G|H is the

collection of all right (or left) cosets of H in G

= number of distinct elements in G number of distinct elements in H

=o(G)o(H)
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      by Lagrange’s Theorem

Example  2: Show that  every  quotient  group of  a  cyclic  group is  cyclic,  but  not

conversely.

Solution:

Let H be a subgroup of a cyclic group G. Then H is also cyclic because every cyclic

group is abelian. Therefore H is a normal subgroup of G.

Let aa be  a  generator  of G and an be  any  element  of G,  where n is  an  integer.

Then Han is any element of G|H.

Also, it can be easily proved that (Ha)n=Han for every integer n. Therefore, G|H is

cyclic and its generator is Ha.

Its converse is not true; for example if P3 and A3 are the symmetric and alternating

groups  of  the  three  symbols a,b,c then  the  quotient  group P3|A3 is  cyclic,

whereas P3 is not.

Example 3: Show that every quotient group of an abelian group is abelian but its

converse is not true.

Solution:

Let a,b G∈  be arbitrary, then Ha,Hb are any two elements of the quotient group G|H.

Then we have (Ha)(Hb)=Hab=Hba=(Hb)(Ha)

Therefore, G|H is an abelian.

Its converse is not true; for example if P3 and A3 are the symmetric and alternating

groups of the three symbols a,b,c then the quotient group P3|A3 being of order 2 is

abelian whereas P3 is not.

Group Homomorphism

By  homomorphism  we  mean  a  mapping  from  one  algebraic  system  with  a  like

algebraic system which preserves structures.
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Definition

Let G and G′ be any two groups with binary operation ∘ and ∘’ respectively. Then a

mapping f:G→G′ is said to be a homomorphism if for all a,b G∈ ,

f(a∘b)=f(a) ‘∘ f(b)

A homomorphism f which at the same time is also onto is said to be an epimorphism.

A  homomorphism f which  at  the  same  time  is  also  one-one  is  said  to  be  an

monomorphism.

A  group G′ is  called  a  homomorphism  image  of  a  group G,  if  there  exists  a

homomorphism f of G onto G′. A homomorphism of a group G into itself is called an

endomorphism.

Examples:

(i) Let G be  any  group  under  binary  operation ∘.  If f(x)=x for

every x G∈  then f:G→G is a homomorphism because

f(xy)=f(x)f(y)

(ii) Let G be  the  group of  integers  under  addition,  let G′ be  the  group of  integers

under addition modulo n. If f:G→G′ be defined by f(x)=remainder  of x on division

by n, then this is a homomorphism.

(iii) Let G be any group under addition. If f(x)=e,  x G∀ ∈  then the mapping f:G→G is

a homomorphism because for all x,y G∈ , f(x,y)=e and f(x)+f(y)=e+e=e, so that

f(x+y)=f(x)+f(y)

(iv) Let G be  the  group  of  integers  under  addition  and  let G′=G.  If  for

all x G∈ , f(x)=2x, then f is a homomorphism because

f(x+y)=2(x+y)=2x+2y=f(x)+f(y)

Kernel of Homomorphism

Definition

If f is a homomorphism of a group G into a G′, then the set K of all those elements
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of G which  is  mapped  by f onto  the  identity e′ of G′ is  called  the  kernel  of  the

homomorphism f.

Theorem:

Let G and G′ be any two groups and let e and e′ be their respective identities. If f is a

homomorphism of G into G′, then

(i)f(e)=e′

(ii) f(x–1)=[f(x)]–1 for all x G∈

(iii) K is a normal subgroup of G.

Proof:

(i) We know that for x G∈ , f(x) G′∈ .

f(x) e′⋅  = f(x) = f(xe) = f(x).f(e),  and  therefore  by using  left  cancellation  law we

have e′=f(e) or f(e)=e′

(ii) Since for any x G∈ , xx–1 = e, we get

f(x).f(x–1)=f(xx–1)=f(e)=e′

Similarly x–1x = e, gives f(x–1) f(x)=e′⋅

Hence by the definition of [f(x)]–1 in G′ we obtain the result

f(x–1)=[f(x)]–1

(iii) Since f(e)=e′, e K∈ , this shows that K≠ϕ,

now let a,b K∈ , x G∈ , a K,b K∈ ∈ ,

f(a)=e′,f(b)=e′⇒

            f(a)=e′,f(b⇒ –1)=[f(b)]–1 =e′

                 f(ab⇒ –1) = f(a)[f(b)]–1 = e′ e′ = e′⋅

ab⇒ –1 K∈

This establishes that K is a subgroup of G.



Now, to show that it is also normal we prove the following:

f(x–1ax)=f(x–1)f(a)f(x)

=[f(x)]–1f(a)f(x)

=[f(x)]–1e′f(x)

=[f(x)]–1f(x)=e′

Therefore, x–1ax K∈ , hence the result

Examples of Group Homomorphism

Here’s some examples of the concept of group homomorphism.

Example 1:

Let G={1,–1,i,–i}, which forms a group under multiplication and I= the group of all

integers  under  addition,  prove  that  the  mapping f from I onto G such

that f(x)=in n I∀ ∈  is a homomorphism.

Solution: Since f(x)=in,f(m)=im, for all m,n I∈

f(m+n)=im+n =im in = f(m) f(n)⋅ ⋅

Hence f is a homomorphism.

Example 2:

Show that the mapping f of the symmetric group Pn onto the multiplicative group G

′={1,–1} defined by f(α)=1 or –1.

According as α is an even or odd permutation in Pn is a homomorphism of Pn onto G

′.

Solution: We know that the product of two permutations both even or both odd is

even while the product of one even and one odd permutation is odd. We shall show

that

f(αβ)=f(α)f(β) α,β Pn∀ ∈
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(i) if α,β are both even, then

f(αβ)=1=1 1=⋅ f(α)⋅f(β)

(ii) if α,β are both odd, then

f(αβ)=1=(–1) (–1)=f(α) f(β)⋅ ⋅

(iii) if α is odd and β is even, then

f(αβ)=–1=(–1) 1=f(α) f(β)⋅ ⋅

(iv) if α is even and βis odd, then

f(αβ)=–1=1 (–1)=f(α) f(β)⋅ ⋅

Thus f(αβ)=f(α)f(β) α,β Pn∀ ∈ . Also obviously f is onto G′.

Therefore f is a homomorphism of Pn onto G′.

Example 3:

Show that a homomorphism from s simple group is either trivial or one-to-one.

Solution: Let G be  a  simple  group  and f be  a  homomorphism  of G into  another

group G′.  Then  the  kernel f is  a  normal  subgroup  of G.  But  the  only  normal

subgroups  of  the  simple  group G are G and {e}.  Hence  either K=G or K={e}.

If K=G,  the f–image  of  each  element  of G is  the  identity  of G′,  as  such  the

homomorphism f is trivial one. If K={e}, the homomorphism f is one-to-one.

Cayley’s Theorem

Cayley’s Theorem:

Every group is isomorphic to a permutation group.

Proof: Let G be a finite group of order n. If a G∈ , then  x G∀ ∈ , ax G∈ . Now consider a

function from G into G, defined by

fa(x) = ax x G∀ ∈
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For x,y G,fa(x)=fa(y) ax=ay x=y∈ ⇒ ⇒ . Therefore, the function fa is one-one.

The function fa is  also onto because if x is  any element  of G then there  exists  an

element a–1x such that

fa(a–1x) = a(a–1x)=(aa–1)x = ex = x

Thus fa is one-one from G onto G. Therefore, fa is a permutation on G. Let G′ denote

the set of all such one-to-one functions defined on G corresponding to every element

of G, i.e. G′={fa:a G}∈

Now, we show that G′ is a group with respect to the product of functions.

(i) Closure Axiom: Let fa,fb G′∈  where a,b G∈ , then

(fa fb)x=fa[fb(x)]=fa(bx)=a(bx)=(ab)x=fab(x) x G∘ ∀ ∈

Since ab G∈ , therefore fab G′∈  and thus G′ is closed under the product of functions.

(ii) Associative Axiom: Let fa,fb,fc G′∈  where a,b,c G∈ , then

fa (fb fc)=fa fbc=fa(bc)=f(ab)c=fab fc=(fa fb) fc∘ ∘ ∘ ∘ ∘ ∘

The product of functions is associative in G′.

(iii) Identity  Axiom: If e is  the  identity  element  in G,  then fe is  the  identity  of G

′ because  fx G′∀ ∈  we have  fe fx∘  = fex = fx and  fx fe∘  = fxe = fx.

(iv) Inverse Element: If a–1 is the inverse of a in G, then fa–1 is the inverse of fa in G

′ because fa–1 fa∘  = fa–1a = fe and fa fa∘ –1 = faa–1 = fe

Hence G′ is  a  group  with  respect  to  the  composite  of  functions  denoted  by  the

symbol ∘.

Now consider the function g and G into G′ defined by g(a)=fa a G∀ ∈ .

g is one-one because for a,b G∈ .

g(a)=g(b) fa=fb fa(x)=fb(x)⇒ ⇒



ax=bx a=b, x G⇒ ⇒ ∀ ∈

g is onto because if fa G′∈  then for a G∈ , we have g(a)=fa

g preserves composition in G and G′ because if  a,b G∈  then

g(ab)=fab=fa∘fb=g(a)∘g(b)

Hence G G′≅ .
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UNIT 2-  Conjugacy in a Group
Conjugate Element: If a, b∈G,  then b is  said  to  be  a  conjugate
of a in G if there exists an element x ∈G such that b = x–1ax.

Symbolically,  we  shall  write a ∼b for  this  and  shall  refer  to  this
relation as conjugacy.

Then b ∼a ⇔b = x–1ax for some x∈G

DEF: equivalence relation

(i) Reflexivity:   a ∼a∀a∈G

(ii)Symmetric:  a∼b ⇒b∼a

(iii) Transitivity: a∼b, b∼c ⇒a∼c

Theorem: Conjugacy is an equivalence relation in a group.

Proof:

(i) Reflexivity: Let a∈G, then a = e–1ae, hence a ∼a∀a∈G, i.e. the
relation of conjugacy is reflexive. 

(ii) Symmetric: Let a∼b so that there exists an element x∈G such
that a = x–1bx, a,b∈G. Now

a∼b⇒a=x–1bx ⇒xa=x(x–1bx)

⇒xax–1=(xx–1)b(xx–1)⇒b=xax–1⇒b=(x–1)–1ax–1,x∈G ⇒b∼a

Thus a∼b=b∼a. Hence the relation is symmetric.

(ii) Transitivity: Let there exist two elements x,y∈G 

such that a = x–1bx  and b = y–1cy  for a,b,c∈G. 

Hence a∼b, b∼c

⇒a=x–1bx and⇒ b=x–1cx ⇒a=x–1(y–1cy)x ⇒a=(x–1y–1)c(yx) ⇒a=(yx)–

1c(yx)

Here yx∈G and G are the group. Therefore a∼b,b∼c ⇒ a∼c.

Hence the relation is transitive.

Thus conjugacy is an equivalence relation on G.

Conjugate Classes: For a∈G,  let C(a)={x: x∈G and a∼x}, C(a),
the equivalence class of a in G under a conjugacy relation is usually
called  the  conjugate  class  of a in G.  It  consists  of  the  set  of  all
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distinct elements of the type y–1ay.
In  other  words,  a  group G is  isomorphic  to  the  group G′ if  there
exists a one-one onto mapping of G and G′ such that the image of
the product  of  two elements is the product  of  the images of  the
elements with respect to the composition in the respective group.

The last condition may also be stated as follows:

If ab = c  where a,b,c∈G and f(a)=a′,f(b)=b′,f(c)=c′ then a′b′=c
′ where a′,b′,c′∈G′.



UNIT 3

Rings
Homomorphism
Ideals
Quotient rings
Maximal ideal

Field of Quotients of integral
domain 

Ring

Definition

A ring is  a  set R together  with  two  operations (+) and ( )⋅  satisfying  the  following
properties (ring axioms):

(1) R is an abelian group under addition. That is, RR is closed under addition, there is
an additive identity (called 00), every element a\in Ra∈R has an additive inverse -a\in
R−a∈R, and addition is associative and commutative.

(2) RR is  closed  under  multiplication,  and  multiplication  is  associative:\
begin{aligned} \forall a,b&\in R &a\cdot b&\in R\\ \forall a,b,c&\in R &a\cdot (b\
cdot c ) &=( a\cdot b ) \cdot c. \end{aligned}∀a,b∀a,b,c∈R∈Ra⋅ba (⋅ b⋅c)∈R=(a⋅b)⋅c.

(3) Multiplication distributes over addition:\forall a,b,c\in R\quad a\cdot \left( b+c \
right) =a\cdot b+a\cdot c\quad \text{and}\quad \left( b+c \right) \cdot a=b\cdot a+c\
cdot a.∀a,b,c∈Ra (⋅ b+c)=a⋅b+a⋅cand(b+c)⋅a=b⋅a+c⋅a.
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A  ring  is  usually  denoted  by (  R,+,  \cdot)(R,+, )⋅  and  often  it  is  written  only
as RR when the operations are understood. _\square□

Elementary Properties of Rings

Some basic elementary properties of a ring can be illustrated with the help of the
following  theorem,  and  these  properties  are  used  to  further  develop  and  build
concepts on rings.

Theorem:

If R is a ring, then for all a,b are in R.

(a) a 0=0⋅ ⋅a=aa 0=0 a=a⋅ ⋅
(b) a(–b)=(–a)b=–(ab)a(–b)=(–a)b=–(ab)
(c) (–a)(–b)=ab(–a)(–b)=ab

Proof:

(a) We know that
a0=a(0+0)=a0+a0∀a∈R[usingdistributive
law]a0=a(0+0)=a0+a0 a R[usingdistributive law]∀ ∈

Since RR is a group under addition, applying the right cancellation law,
a0=a0+a0⇒a+a0=a0+a0⇒a0=0a0=a0+a0 a+a0=a0+a0 a0=0⇒ ⇒

Similarly, 0a=(0+0)a=0a+0a∀a∈R[usingdistributive
law]0a=(0+0)a=0a+0a a R[usingdistributive law]∀ ∈
∴0+0a=0a+0a[because0=0a+0a] 0+0a=0a+0a[because0=0a+0a]∴

Applying right cancellation law for addition, we get 0=0a0=0a i.e. 0a=00a=0

Thus a0=0a=0a0=0a=0

(b) To prove that a(–b)=–aba(–b)=–ab we should show that ab=a(–b)=0ab=a(–b)=0

We  know  that a[b+(b)]=a0=0a[b+(b)]=a0=0 because b+(–b)=0b+(–b)=0 with  the
above result (a)
ab+a(–b)=0[bydistributivelaw]ab+a(–b)=0[bydistributivelaw]
∴a(–b)=–(ab) a(–b)=–(ab)∴

Similarly, to show (–a)b=–ab(–a)b=–ab, we must show that ab+(–a)b=0ab+(–a)b=0

But ab+(–a)b=[a+(–a)]b=0b=0ab+(–a)b=[a+(–a)]b=0b=0
∴–(a)b=–(ab) –(a)b=–(ab)∴  hence the result.

(c) Proving (–a)(–b)=ab(–a)(–b)=ab is a special case of forgoing the article. However
its proof is given as:
(–a)(–b)=–[a(–b)]=[–(ab)]=ab(–a)(–b)=–[a(–b)]=[–(ab)]=ab

This is because –(–x)=x–(–x)=x is a consequence of the fact that in a group, the
inverse of the inverse of an element is the element itself.
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Examples of Rings

Example 1:

A  Gaussian  integer  is  a  complex  number a+iba+ib,  where aa and bb are  integers.
Show that the set J(i)J(i) of Gaussian integers forms a ring under the ordinary addition
and multiplication of complex numbers.

Solution:

Let a1+ib1a1+ib1 and a2+ib2a2+ib2 be any two elements of J(i)J(i), then

(a1+ib1)+(a2+ib2)=(a1+a2)=i(b1+b2)=A+iB(a1+ib1)+
(a2+ib2)=(a1+a2)=i(b1+b2)=A+iB

and

(a1+ib1) (⋅ a2+ib2)=(a1a2–b1b2)+i(a1b2+b1a2)=C+iD(a1+ib1) (a2+ib2)=(a1a2–⋅
b1b2)+i(a1b2+b1a2)=C+iD

These are Gaussian integers and therefore J(i)J(i) is closed under addition as well as
the  multiplication  of  complex  numbers.  Addition  and  multiplication  are  both
associative and commutative compositions for complex numbers.

Also,  multiplication  distribution  with  respect  to  addition.  The  additive  inverse
of a+ib∈J(i)a+ib J(i)∈  is (–a)+(–b)i∈J(i)(–a)+(–b)i J(i)∈  as

(a+ib)=(–a)+(–b)i=(a–a)+(b–b)i=0+0i=0(a+ib)=(–a)+(–b)i=(a–a)+(b–b)i=0+0i=0

The Gaussian integer 1+0⋅i1+0 i⋅  is the multiplicative identity. Therefore, the set of
Gaussian integers is a commutative ring with unity.

 

Example 2: Prove that the set of residue {0, 1, 2, 3, 4} modulo 5 is a ring with respect
to the addition and multiplication of residue classes (mod 5).

 

Solution: Let R  =  {0,  1,  2,  3,  4}. Addition  and  multiplication  tables  for  given
set R are:

+ mod 5 0 1 2 3 4 mod 5 0 1 2 3 4

0 0 1 2 3 4 0 0 0 0 0 0

1 1 2 3 4 0 1 0 1 2 3 4

2 2 3 4 0 1 2 0 2 4 1 3

3 3 4 0 1 2 3 0        

4 4 0 1 2 3 4          
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From the addition composition table the following is clear:

(i) Since all elements of the table belong to the set, it is closed under addition (mod
5).

(ii) Addition (mod 5) is always associative.

(iii) 0∈R0 R∈  is the identity of addition.

(iv) The additive inverse of the elements 0, 1, 2, 3, 4 are 0, 4, 3, 2, 1 respectively.

(v) Since the elements equidistant from the principal diagonal are equal to each other,
the addition (mod 5) is commutative.

From the multiplication  composition  table,  we see that (R, .) is  a  semi group, i.e.
following axioms hold good.

(vi) Since  all  the  elements  of  the  table  are  in R,  the  set R is  closed  under
multiplication (mod 5).

(vii) Multiplication (mod 5) is always associative.

(viii) The multiplication  (mod 5)  is  left  as well  as right  distributive  over  addition
(mod 5).

Hence (R,+, )⋅ (R,+, )⋅  is a ring.

Special Types of Rings

1. Commutative Rings

A ring RR is  said  to  be  a  commutative  if  the  multiplication  composition  in RR is
commutative, i.e.

ab=ba∀a,b∈Rab=ba a,b R∀ ∈

2. Rings With Unit Element

A ring RR is said to be a ring with unit element if RR has a multiplicative identity, i.e.
if there exists an element RR denoted by 11, such that

1⋅a=a 1⋅ ∀a∈R1 a=a 1 a R⋅ ⋅ ∀ ∈

The ring of all n×nn×n matrices with element as integers (rational, real or complex
numbers) is a ring with unity. The unity matrix

In=⎡⎣⎢⎢⎢⎢⎢⎢⎢100 0010 0001 0 000 1⋮ ⋮ ⋮ ⋯⋯⋯⋱⋯ ⋮ ⎤⎦⎥⎥⎥⎥⎥⎥⎥In=[100 0010 0001⋯ ⋯ ⋯
0 000 1]⋮⋮⋮⋱⋮ ⋯

is the unity element of the ring.
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3. Rings With or Without Zero Divisors

While  dealing  with  an  arbitrary  ring RR,  we  may  find  elements aa and bb in RR,
where neither of which is zero and their product may be zero. We call such elements
divisors of zero or zero divisors.

Definition:

A  ring  element a(≠0)a(≠0) is  called  a  divisor  of  zero  if  there  exists  an
element b(≠0)b(≠0) in the ring such that either
ab=0ab=0 or ba=0ba=0

We also say that a ring RR is without zero divisors if the product of no two non-zero
elements of the same is zero, i.e. if
ab=0⇒ab=0⇒ either a=0a=0 or b=0b=0 or both a=0a=0 and b=0b=0

Cancellation Laws in a Ring

Cancellation Laws in a Ring

We say that cancellation laws hold in a ring RR if
ab=bc(a≠0)⇒b=cab=bc(a≠0) b=c⇒  and ba=ca(a≠0)⇒b=cba=ca(a≠0) b=c⇒  where a,b,c
a,b,c are in RR

Thus in a ring with zero divisors, it is impossible to define a cancellation law.

 

Theorem:

A ring has no divisor of zero if and only if the cancellation laws holds in R

Proof:

Suppose that RR has no zero divisors. Let a,b,ca,b,c be any three elements of RR such
that a≠0,ab=aca≠0,ab=ac.

Now

ab=ac⇒ab–ac=0⇒a(b–c)=0⇒b–
c=0[becauseRiswithoutzerodivisoranda≠0]⇒b=cab=ac ab–ac=0 a(b–c)=0 b–⇒ ⇒ ⇒
c=0[becauseRiswithoutzerodivisoranda≠0] b=c⇒

Thus the left cancellation law holds in RR. Similarly, it can be shown that the right
cancellation law also holds in RR.

Conversely, suppose that the cancellation law holds in RR. Let a,b∈Ra,b R∈  and if
possible
let ab=0ab=0 with a≠0,b≠0a≠0,b≠0 then ab=a 0⋅ ab=a 0⋅  (because a 0=0⋅ a 0=0⋅ ).

Since a≠0,ab=a 0⋅ ⇒b=0a≠0,ab=a 0 b=0⋅ ⇒
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Hence  we  get  a  contradiction  to  our  assumption  that b≠0b≠0 and  therefore  the
theorem is established.

Division Ring

A ring  is  called  a  division  ring  if  its  non-zero  elements  form a  group under  the
operation of multiplication.

Pseudo Ring

A non-empty set RR with binary operations ++ and ×× satisfying all the postulates of
a ring except right and left distribution laws is called pseudo ring if

(a+b) (⋅ c+d)=a⋅c+a⋅d+b⋅c+b⋅d(a+b) (c+d)=a c+a d+b c+b d⋅ ⋅ ⋅ ⋅ ⋅

for all a,b,c,d∈Ra,b,c,d R∈



Examples of Rings

This section lists many of the common rings and classes of rings that arise in various
mathematical contexts.

(1) The ring \mathbb ZZ of integers is the canonical example of a ring. It is an easy
exercise to see that \mathbb ZZ is an integral domain but not a field.

(2) There are many other similar  rings studied in algebraic  number theory,  of the
form {\mathbb Z}[\alpha]Z[α], where \alphaα is an algebraic integer. For example, {\
mathbb  Z}\left[\sqrt{2}\right]  =  \{  a+b\sqrt{2}  \colon  a,b  \in  {\mathbb  Z}\}Z[2
]={a+b2:a,b∈Z} is a ring, an integral domain, to be precise. Also we have the ring of
Gaussian  integers {\mathbb  Z}[i]  =  \{  a+bi  \colon  a,b  \in  {\mathbb
Z}\}Z[i]={a+bi:a,b∈Z}, where ii is the imaginary unit.

(3) If RR is a ring, then so is the ring R[x]R[x] of polynomials with coefficients in RR.
In  particular,  when R  =  {\mathbb  Z}/p{\mathbb  Z}R=Z/pZ is  the  finite  field
with pp elements, R[x]R[x] has  many  similarities  with \mathbb  ZZ.  For  example,
there is a Euclidean algorithm and hence unique factorization into irreducibles. See
the introduction to algebraic number theory for details.

More generally, if XX is a set and RR is a ring, the set of functions from XX to RR is a
ring, with the natural operations of pointwise addition and multiplication of functions.
For many sets XX, this ring has many interesting subrings constructed by restricting to
functions with properties that are preserved under addition and multiplication. If X =
R = {\mathbb R}X=R=R, for instance,  there are subrings of continuous functions,
differentiable functions, polynomial functions, and so on.

(4) The set of n \times nn×n matrices with entries in a commutative ring RR is a ring,
which is non-commutative for n \ge 2n≥2. This ring has a unity, the identity matrix.
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But it may have divisors of zero. E.g. \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\
begin{pmatrix} 0 & 0 \\  0 & 1 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\  0 & 0 \
end{pmatrix}(1000)(0001)=(0000). This shows that \begin{pmatrix} 1 & 0 \\ 0 & 0 \
end{pmatrix}(1000) and \begin{pmatrix}  0  & 0  \\  0  & 1  \end{pmatrix}(0001) are
divisors of zero in the ring { M }_{ 2 }\left( R \right)M2(R).

(5) Another classical example is the ring of quaternions, the set of expressions of the
form a+bi+cj+dka+bi+cj+dk,  where a,b,c,d  \in  {\mathbb
Z}a,b,c,d∈Z and i,j,ki,j,k satisfy  the  relationsi^2=j^2=k^2=ijk=-
1.i2=j2=k2=ijk=−1.This has numerous applications in physics. This is a strictly skew
field.
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Group Isomorphism

Definition
Let G and G′ be any two groups with binary operation ∘ and  ‘∘ , respectively. If there
exists a one-one onto mapping f:G→G′f:G→G′ such that

f(a b)=f(a) ‘f(b), a,b G∘ ∘ ∀ ∈

In  this  case,  the  group GG is  said  to  be  isomorphic  to  the  group G′,  and  the
mapping ff is said to be an isomorphism. If GG is isomorphic to G′, we write G G≃
′ or  G G′≅ .

Properties of Isomorphism

Theorem 1:
If  isomorphism  exists  between  two  groups,  then  the  identities  correspond,  i.e.
if f:G→G′ is  an  isomorphism  and e,e′ are  respectively  the  identities  in G,G′,
then f(e)=e′.

Theorem 2:
If  isomorphism  exists  between  two  groups,  then  the  identities  correspond,  i.e.
if f:G→G′ is an isomorphism and f(a)=a′, where a G,a′ G′∈ ∈  then f(a–1)=a′–1=[f(a)]–
1f(a–1)=a′–1

=[f(a)]–1.

Theorem 3:
In an isomorphism the order of an element is preserved, i.e. if f:G→G′f:G→G′ is an
isomorphism, and the order of aa is nn, then the order of f(a)f(a) is also nn.

Proof:
As f(a)=a′,  then  we  have f(a a)=f(a) f(a)=a′ a′=a′⋅ ⋅ ⋅ 2 and  in  general  we  can  write  it
as f(an)=a′n.

But f(an)=f(e)=e′, by using the statement of Theorem 1,

therefore a′n=e′. Also a′m≠e′ for m<n, i.e. o(a′)=n.

It follows that the order of an element of G, if finite, is equal to the order of its image
in G′. If the order of aa is infinite, we can similarly show that the order of a′ cannot be
finite.

Theorem 4:
The relation of isomorphism in the set of groups is an equivalence relation.

Isomorphism of Cyclic Groups

Theorem 1:
Cyclic groups of the same order are isomorphic.

Proof: Let G and′G′ be two cyclic groups of order n, which are generated by a and
b respectively. Then
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G={a,a2,a3,…,an=e}

and

G′={b,b2,b3,…,bn=e′}

The mapping f:G→G′, defined by f(ar)=br, is isomorphism.

f(ar as)=f(ar+s)=br+s=br bs=f(ar) f(as)⋅ ⋅ ⋅

Therefore the groups are isomorphic.

Theorem 2:
An infinite cyclic group is isomorphic to the additive group of integers.

Proof: Let G be an infinite cyclic group, generated by a, then

G={…,a–2,a–1,a0=e,a1,a2,a3,…}={ar:risaninteger}

The mapping f:G→Z, defined by f(ar)=r is an isomorphism, for it is one-one onto, and
further,

f(ar as)=f(ar+s)=r+s=f(ar)+f(as)⋅

It follows that GG is isomorphic to Z.

Theorem 3:
A cyclic  group of  order nn is  isomorphic  to  the  additive  group of  residue  classes
modulo nn.

Proof: Let GG be an infinite cyclic group, generated by aa, then

G={a,a2,a3,…,an–1,an=e}

Let G’ be the additive group or residue classes (modn), i.e.

G′={[1],[2],[3],…,[n]=[0]}

The mapping f:G→G′, defined by f(ar)=[r],  is isomorphism, for it  is one-one onto,
and further,

f(ar as)=f(ar+s)=[r+s]=[r]+[s]=f(ar)+f(as)⋅

It follows that G is isomorphic to G′.

Theorem 4:
A subgroup of the infinite cyclic group is isomorphic to the additive group of integral
multiples of an integer.

Proof:

Let G={…,a–2,a–1,a0=e,a1,a2,a3,…} and let H be a subgroup of G, given by,



H={…,a–2m,a–m,a0=e,am,a2m,…}={(am)n:n Z}∈

Then H is isomorphic to the additive group H′, given by

H′={0,±m,±2m,±3m,…}={nm:n Z}∈

The mapping f:H→H′, defined by f(amn)=nm, is isomorphism, for it is one-one onto,
and if  r,s Z∈ , then

f(arm asm)=f(a(r+s)m)=(r+s)m=rm+sm=f(arm)+f(asm)⋅

It will be observed that H is itself an infinite cyclic group, and as such it is isomorphic
to G. Thus a subgroup of an infinite cyclic group is isomorphic to the group itself.

Examples of Group Isomorphism

Example 1: Show that the multiplicative group G consisting of three cube roots of
unity 1,ω,ω2 is isomorphic to the group G′ of residue classes (mod3) under addition
of residue classes (mod3)

Solution:
Let us consider the composition tables of two structures G,G′ as given below:

× 1 ω ω2

1 1 ω ω2

ω ω ω2 1

ω2 ω2 1 ω

 

+(mod3) {0} {1} {2}

{0} {0} {1} {2}

{1} {1} {2} {0}

{2} {2} {0} {1}

From this table it is evident that if 1,ω,ω2 are replaced by {0},{1},{2} respectively in
the composition table for G, we get the composition table G′. This leads to the fact
that  mapping f of G onto G′ defined  by f(1)={0}, f(ω)={1} , f(ω2)={2} is  an
isomorphism. Also:

f(ω⋅ω2)=f(1)={0}={1}+{2}=f(ω)+f(ω2)

Example 2: Show that the additive group G={…,–2,–1,0,1,2,…} is an isomorphic to
the additive group G′={…,–2m,–m,0,m,2m,…} for any given integer mm.

Solution:
We define a mapping ff by f:G→G′:f(a)=ma, where a G,ma G′∈ ∈  and show that f is an
isomorphism of G onto G′.

We  see  that ff is  one-one  since  two  different  elements  of G have  two
different f– image in G′ is the f– image of an element of G.
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Again:

f(a+b)=m(a+b)=ma+mb f(a+b)=f(a)+f(b)⇒

Thus ff is  composition  preserving  as  well.  Hence ff is  an  isomorphic  mapping
of G onto G′



UNIT 5- Vector Space

Before giving the formal definition of an abstract vector space,  we define what is
known as an external composition in one set over another. We have already defined a
binary  composition  in  a  set AA as  a  mapping  of A×AA×A to AA.  This  may  be
referred to as an internal composition in AA. Now, let AA and BB be two non-empty
sets.  Then  a  mapping f:A×B→Bf:A×B→B is  called  an  external  composition
in BB over AA.

Definition: Let (F,+,×)(F,+,×) be a field. Then a set VV is called a vector space over
the field FF if VV is an abelian group under an operation which is denoted by ++, and
if for every a∈Fa F∈ , u∈Vu V∈  there is defined an element auau in VV such that

(i) a(u+v)=au+ava(u+v)=au+av, for all a∈Fa F∈ , u,v∈Vu,v V∈ .

(ii) (a+b)u=au+bu(a+b)u=au+bu, for all a,b∈Fa,b F∈ , u∈Vu V∈ .

(iii) a(bu)=(ab)ua(bu)=(ab)u, for all a,b∈Fa,b F∈ , u∈Vu V∈ .

(iv) 1⋅u=u 1⋅ 1 u=u 1⋅ ⋅  represents the unity element of FF under multiplication.

The following notations will be constantly used in the forthcoming tutorials.

(1) Generally FF will be the field whose elements shall often be referred to as scalars.

(2) VV will denote the vector space over FF whose elements shall be called vectors.

Thus  to  test  that VV is  a  vector  space  over FF,  the  following  axioms  should  be
satisfied:

(V1): (V,+)(V,+) is an abelian group.

(V2): Scalar  multiplication  is  distributive  over  addition  in VV,
i.e. a(u+v)=au+ava(u+v)=au+av, for all a∈Fa F∈ , u,v∈Vu,v V∈ .

(V3): Distributive  of  scalar  multiplication  over  addition  in FF,
i.e. (a+b)u=au+bu(a+b)u=au+bu, for all a,b∈Fa,b F∈ , u∈Vu V∈ .

(V4): Scalar  multiplication  is  associative,  i.e. a(bu)=(ab)ua(bu)=(ab)u,for
all a,b∈Fa,b F∈ , u∈Vu V∈ .

(V5): Property  of  unity:  Let 1∈F1 F∈  be  the  unity  of FF,  then 1⋅u=u 1⋅ 1 u=u 1⋅ ⋅  for
all u∈Vu V∈ .

A  vector  space VV over  a  field FF is  expressed  by  writing V(F)V(F).  Sometimes
writing only VV is sufficient provided the context makes it clear which field has been
considered.

If the field is RR, the set of real numbers, then VV is said to be a real vector space. If
the field is QQ, the set of rational numbers, then VV  is said to be a rational vector
space. Finally, if the field is CC, the set of complex numbers, VV is called a complex
vector space.
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Vector Subspace

Let VV be a vector space over the field FF. Then a non-empty subset WW of VV is
called a vector space of VV if under the operations of VV, WW itself is a vector space
over FF. In other words, WW is a subspace of VV whenever

w1,w2∈Ww1,w2 W∈  and α,β∈F⇒αw1+βw2∈W

Example:
Prove that the set WW of ordered tried (a1,a2,0)(a1,a2,0) where a1,a2∈Fa1,a2 F∈  is a
subspace of V3(F)V3(F).

Solution:
Let a=(a1,a2,0)a=(a1,a2,0) and b=(b1,b2,0)b=(b1,b2,0) be two elements of WW.

Therefore a1,a2,b1,b2∈Fa1,a2,b1,b2 F∈  let a,b∈Fa,b F∈  then

aα+bβ=a(a1,a2,0)+b(b1,b2,0)=(aa1,aa2,0)+
(bb1,bb2,0)=(aa1+bb1,aa2+bb2,0)∈Waα+bβ=a(a1,a2,0)+b(b1,b2,0)=(aa1,aa2,0)+

(bb1,bb2,0)=(aa1+bb1,aa2+bb2,0) W∈

Because aa1+bb1,aa2+bb2∈Faa1+bb1,aa2+bb2 F∈ .

Linear Dependence and Linear Independence Vectors

Linear Dependence
Let V(F)V(F) be a vector space and let S={u1,u2,…,un}S={u1,u2,…,un} be a finite
subset of VV. Then SS is said to be linearly dependent if there exists scalar α1,α2,
…,αn∈Fα1,α2,…,αn F∈ , not all zero, such that

α1u1+α2u2+ +⋯ αnun=0α1u1+α2u2+ +αnun=0⋯

Linear Independence
Let V(F)V(F) be a vector space and let S={u1,u2,…,un}S={u1,u2,…,un} be a finite
subset of VV. Then SS is said to be linearly independent if,

∑i=0nαiui=0,αi∈F∑i=0nαiui=0,αi F∈

This holds only when αi=0,i=1,2,3,…,nαi=0,i=1,2,3,…,n.

An  infinite  subset SS of VV is  said  to  be  linearly  independent  if  every  finite
subset SS is linearly independent, otherwise it is linearly dependent.

Example  1: Show  that  the  system  of  three  vectors (1,3,2)(1,3,2), (1,–7,–8)(1,–7,–
8), (2,1,–1)(2,1,–1) of V3(R)V3(R) is linearly dependent.

Solution: For α1,α2,α3∈Rα1,α2,α3 R∈ .

α1(1,3,2)+α2(1,–7,–8)+α3(2,1,–1) (⇔ α1+α2+3α3,3α1–7α2+α3,2α1–8α2–
α3)=0⇔α1+α2+3α3=0,3α1–7α2+α3=0,2α1–8α2–α3=0⇔α1=3,α2=1,α3=–
2α1(1,3,2)+α2(1,–7,–8)+α3(2,1,–1) (α1+α2+3α3,3α1–7α2+α3,2α1–8α2–⇔
α3)=0 α1+α2+3α3=0,3α1–7α2+α3=0,2α1–8α2–α3=0 α1=3,α2=1,α3=–2⇔ ⇔

https://www.emathzone.com/tutorials/group-theory/linear-dependence-and-linear-independence-vectors.html
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Therefore, the given system of vectors is linearly dependent.

Example 2: Consider the vector space R3(R)R3(R) and the subset S={(1,0,0),(0,1,0),
(0,0,1)}S={(1,0,0),(0,1,0),(0,0,1)} of R3R3. Prove that SS is linearly independent.

Solution: For α1,α2,α3∈Rα1,α2,α3 R∈ .

α1(1,0,0)+α2(0,1,0)+α3(0,0,1)=(0,0,0) (⇔ α1,α2,α3)=(0,0,0)⇔α1=0,α2=0,α3=0α1(1,0,
0)+α2(0,1,0)+α3(0,0,1)=(0,0,0) (α1,α2,α3)=(0,0,0) α1=0,α2=0,α3=0⇔ ⇔

This  shows that  if  any linear  combination  of  the  elements  of SS is  zero  then  the
coefficient must be zero. SS is linearly independent.

Basis of a Vector Space

A subset SS of a vector space V(F)V(F) is said to be a basis of V(F)V(F), if

(i) SS consists of a linearly independent vector, and

(ii) SS generates V(F)V(F),  i.e. L(S)=VL(S)=V,  i.e.  each  vector  in VV is  a  linear
combination of a finite number of elements of SS.

For example the set {(1,0,0),(0,1,0),(0,0,1)}{(1,0,0),(0,1,0),(0,0,1)} is a basis of the
vector space V3(R)V3(R) over the field of real numbers.

Dimension
The  dimension  of  a  vector  space V(F)V(F) is  the  number  of  elements  in  a  basis
of V(F)V(F).

Example:
Show  that  the  set S={(1,2,1),(2,1,0),(1,–1,2)}S={(1,2,1),(2,1,0),(1,–1,2)} forms  a
basis for V3(F)V3(F).

Solution:
For a1,a2,a3∈Fa1,a2,a3 F∈ ,  then a1(1,2,1)+a2(2,1,0)+a3(1,–
1,2)=0a1(1,2,1)+a2(2,1,0)+a3(1,–1,2)=0

(⇒ a1+2a2+a3,2a1+a2–a3,a1+2a3)=(0,0,0)⇒a1+2a2+a3=0,2a1+a2–
a3=0,a1+33=0⇒a1=a2=a3=0 (a1+2a2+a3,2a1+a2–⇒

a3,a1+2a3)=(0,0,0) a1+2a2+a3=0,2a1+a2–a3=0,a1+33=0 a1=a2=a3=0⇒ ⇒

Hence the given set is linearly independent.

Now let

(1,0,0)=x(1,2,1)+y(2,1,0)+z(1,–1,2)=(x+2y+z,2x+y–z,x+2z)
(1,0,0)=x(1,2,1)+y(2,1,0)+z(1,–1,2)=(x+2y+z,2x+y–z,x+2z)

So that x+2y+z=1,2x+y–z=0,x+2z=0x+2y+z=1,2x+y–z=0,x+2z=0
∴x=–29,y=59,z=19 x=–29,y=59,z=19∴

Thus, the unit vector (1,0,0)(1,0,0) is a linear combination of the vectors of the given
set, i.e.
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(1,0,0)=–29(1,2,1)+59(2,1,0)+19(1,–1,2)(1,0,0)=–29(1,2,1)+59(2,1,0)+19(1,–1,2)
(0,1,0)=49(1,2,1)–19(2,1,0)–29(1,–1,2)(0,1,0)=49(1,2,1)–19(2,1,0)–29(1,–1,2)
(0,0,1)=13(1,2,1)–13(2,1,0)+13(1,–1,2)(0,0,1)=13(1,2,1)–13(2,1,0)+13(1,–1,2)

Since V3(F)V3(F) is generated by the unit vectors(1,0,0)(1,0,0), (0,1,0)(0,1,0), (0,0,1)
(0,0,1), we see that every element of V3(F)V3(F) is a linear combination of the given
set SS. Hence the vectors of this set form a basis of V3(F)V3(F).

Read more: https://www.emathzone.com/tutorials/group-theory/basis-of-a-vector-
space.html#ixzz6U93FCYEr

https://www.emathzone.com/tutorials/group-theory/basis-of-a-vector-space.html#ixzz6U93FCYEr
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Orbits

Lemma
Let σ be a permutation of a set A. Then the relation ∼ on A
defined by

a ∼ b ⇔ b = σn(a) for some integer n

is an equivalence relation.

Definition
The equivalence classes determined by the above equivalence
relation are the orbits of σ.



Orbits

Proof.
We check

1. Reflexive: a ∼ a for all a ∈ A since a = σ0(a).

2. Symmetric: If a ∼ b, i.e., if b = σn(a), then a = σ−n(b) and
thus b ∼ a.

3. Transitive: If a ∼ b and b ∼ c, then b = σn(a) and
c = σm(b) for some m, n ∈ Z. It follows that
c = σm(b) = σm(σn(a)) = σm+n(a). Thus a ∼ c.



Orbits

Example
Let

σ =

(
1 2 3 4 5 6 7 8
3 8 6 7 4 1 5 2

)
To find the orbit containing 1, we apply σ repeatedly, obtaining

1 → 3 → 6 → 1 → 3 → 6 → · · · .

Thus, the orbit containing 1 is {1, 3, 6}. Likewise, we have

2 → 8 → 2 → 8 → 2 → 8 → · · · ,

4 → 7 → 5 → 4 → 7 → 5 → · · · .

We conclude that there are three orbits
{1, 3, 6}, {2, 8}, {4, 5, 7}.



In-class exercises

Find the orbits of the following permutations.

1.
(

1 2 3 4 5 6 7 8 9
3 7 1 2 8 5 9 6 4

)
.

2.
(

1 2 3 4 5 6 7 8 9
8 2 7 1 5 4 3 6 9

)
.

3.
(

1 2 3 4 5 6 7 8 9
2 8 7 4 9 1 3 6 5

)
.



Cycles

Observe that a permutation σ can be decomposed into a
product of several permutations, each of which acts non-trivially
on at most one of the orbits. For example, we have(

1 2 3 4 5
2 3 1 5 4

)
=

(
1 2 3 4 5
2 3 1 4 5

) (
1 2 3 4 5
1 2 3 5 4

)
where the orbits are {1, 2, 3} and {4, 5}, and we decompose it

into a product of two permutations, one acting on {1, 2, 3} and
the other on {4, 5}. This motivates the following definition.



Cycles

Definition
A permutation σ ∈ Sn is a cycle if it has at most one orbit
containing more than one element. (That is, σ acts non-trivially
on at most one orbit.) The length of a cycle is the number of
elements in the largest cycle.

Notation
Since cycles have at most one orbit containing more than one
element, we can represent cycles using only information of the
largest orbit. Suppose that in the largest orbit of a cycle σ we
have x1 → x2 → x3 → · · · → xn → x1. Then we write

σ = (x1, x2, . . . , xn).



Examples

1.
(

1 2 3 4 5
2 3 1 5 4

)
is not a cycle since the orbits are

{1, 2, 3} and {4, 5}. Both of them have more than one
element.

2.
(

1 2 3 4 5
2 3 1 4 5

)
and

(
1 2 3 4 5
1 2 3 5 4

)
are both cycles.

The orbits of the former are {1, 2, 3}, {4}, and {5}, and
those of the latter are {1}, {2}, {3}, and {4, 5}. The
lengths are 3 and 2, respectively. Moreover, in the cyclic
notations, they are (1, 2, 3) and (4, 5).



Cycles

Theorem (9.8)
Every permutation σ of a finite set is a product of disjoint cycles.

Proof.
Let B1, . . . , Br be the orbits of σ. Define cycles τi by

τi(x) =

{
σ(x), if x ∈ Bi ,

x , if x 6∈ Bi .

Then σ = τ1τ2 . . . τr . Clearly, these τi are disjoint.



Example

In σ =

(
1 2 3 4 5
3 5 2 4 1

)
, we have

1 → 3 → 2 → 5 → 1 → 3 · · ·
4 → 4 → 4 → 4 → 4 → 4 · · ·

Thus, we write σ = (1, 3, 2, 5), or
σ = (3, 2, 5, 1) = (2, 5, 1, 3) = (5, 1, 3, 2). (It is fine, though not
necessary to write σ = (1, 3, 2, 5)(4).)



Example

In σ =

(
1 2 3 4 5 6 7 8
3 8 6 7 4 1 5 2

)
We have

1 → 3 → 6 → 1 → 3 → 6 → · · · ,

2 → 8 → 2 → 8 → 2 → 8 → · · · ,

4 → 7 → 5 → 4 → 7 → 5 → · · · .

Thus, σ = (1, 3, 6)(2, 8)(4, 7, 5). Also,
σ = (2, 8)(4, 7, 5)(1, 3, 6) = (4, 7, 5)(8, 2)(3, 6, 1) = · · · . But
σ 6= (1, 6, 3)(2, 8)(4, 7, 5).



Remarks

1. The multiplication of disjoint cycles are commutative. For
example, we have(

1 2 3 4 5
2 3 1 5 4

)
= (1, 2, 3)(4, 5) = (4, 5)(1, 2, 3).

2. Up to the order of the cycles, the representation of a
permutation as a product of cycles is unique.

3. A product of several cycles can still be a cycle. For
example, we have (1, 2)(1, 3) = (1, 3, 2).



In-class exercise

Express the following permutations as products of disjoint
cycles.

1.
(

1 2 3 4 5 6 7 8 9
3 7 1 2 8 5 9 6 4

)
.

2.
(

1 2 3 4 5 6 7 8 9
8 2 7 1 5 4 3 6 9

)
.

3. (1, 3, 2, 5)(4, 2, 8, 7)(3, 9, 1, 2)(6, 9).



Transposition

Definition
A cycle of length 2 is a transposition.

Theorem (9.12)
Any permutation of a finite set of at least two elements is a
product of transposition.

Proof.
If σ is the identity element, we have σ = (1, 2)(1, 2). Otherwise,
write σ as a product of cycles. Now for each cycle
(a1, a2, . . . , an) we have

(a1, a2, . . . , an) = (a1, an)(a1, an−1) . . . (a1, a2).

This proves the theorem.



Examples

1. We have (1, 2, 3) = (1, 3)(1, 2).

2. We have(2, 5, 1, 3) = (2, 3)(2, 1)(2, 5). Also,
(2, 5, 1, 3) = (5, 1, 3, 2) = (5, 2)(5, 3)(5, 1), and
(2, 5, 1, 3) = (1, 3, 2, 5) = (1, 5)(1, 2)(1, 3). Thus, there are
more than one way to write a cycle as a product of
transpositions.

3. We have (1, 2, 3, 4) = (1, 4)(1, 3)(1, 2). Also
(1, 2, 3, 4) = (1, 2)(3, 4)(1, 2)(1, 3)(1, 4)(3, 4)(1, 2).



Even and odd permutations

Theorem (9.15)
No permutation in Sn can be expressed both as a product of an
even number of transpositions and as a product of an odd
number of transpositions.

Proof
It suffices to prove that if τ = (i , j), i 6= j , is a transposition, and
σ ∈ Sn, then the number of orbits of σ and that of τσ differ by 1.
To see why this suffices, note that if σ = τ1τ2 . . . τr , then
σ = τ1 . . . τr ι, where ι is the identity permutation. Since the
number of orbits of ι is n, the number of orbits of σ will be
congruent to n + r modulo 2. Thus, r must be congruent to
n + (the number of orbits of σ) modulo 2.



Proof of Theorem 9.15, continued.
Write σ ∈ Sn as a product of disjoint cycles.

Case 1. i and j are in two different cycles. Say,
σ = (i , a1, . . . , ar )(j , b1, . . . , bs)µ1 . . . µm, where the cycles are
disjoint. (r and s could be 0.) Then

(i , j)σ = (i , j)(i , a1, . . . , ar )(j , b1, . . . , bs)µ1 . . . µm

= (i , a1, . . . , ar , j , b1, . . . , bs)µ1 . . . µm.

In this case, the number of orbits of τσ is one less than that of
σ.

Case 2. i and j are in the same cycle. Assume that
σ = (i , a1, . . . , ar , j , b1, . . . , bs)µ1 . . . µm. Then

(i , j)σ = (i , a1, . . . , ar )(j , b1, . . . , bs)µ1 . . . µm.

In this case, the number of orbits of τσ is one more than that of
σ. �



Even and odd permutations

Definition
A permutation of a finite set is even or odd according to
whether it can be expressed as a product of an even number of
transpositions or an odd number of transpositions.

Example

1. The identity permutation is equal to (1, 2)(1, 2). Thus, the
identity permutation is even.

2. Let σ = (a1, . . . , an be a cycle. Then
σ = (a1, an) . . . (a1, a2). Thus, if the length n is even, then
the cycle is an odd permutation. If the length is odd, then
the cycle is an even permutation.

3. Let σ = (1, 3, 6, 5)(2, 8, 4). Since (1, 3, 6, 5) is odd and
(2, 8, 4) is even, σ is odd.



Alternating groups

Theorem (9.20)
If n ≥ 2, then the set An of all even permutations of {1, 2, . . . , n}
forms a subgroup of order n!/2 of Sn.

Proof.
The statement has two parts, one claiming that An is a
subgroup, and the other asserting that |An| = n!/2. We first
show that An is a subgroup. We need to check

1. Closed: If σ1 and σ2 are both products of an even number
of transpositions, so is σ1σ2.

2. Identity: id = (1, 2)(1, 2), which is even.

3. Inverse: If σ = τ1τ2 . . . τ2n is a product of an even number
of transpositions τj , then σ−1 = τ−1

2n τ−1
2n−1 . . . τ−1

1 is also
even.



Proof of Theorem 9.20, continued

We now prove that |An| = n!/2. It suffices to prove that the
number of even permutations in Snis equal to the number of
odd permutations in Sn.

Let Bn be the set of all odd permutations in Sn. (Note that Bn is
not a subgroup since it is not closed under multiplication.)
Define λ : An → Bn by λ(σ) = (1, 2)σ. We claim that λ is
one-to-one and onto. This shows that
|An| = |Bn| = |Sn|/2 = n!/2.

One-to-one: If (1, 2)σ1 = (1, 2)σ2, then by the left cancellation
law, we have σ1 = σ2. Thus λ is one-to-one.

Onto: If σ ∈ Bn is an odd permutation, then (1, 2)σ is even and
we have λ((1, 2)σ) = (1, 2)(1, 2)σ = σ. Thus, λ is onto. �.



Alternating groups

Definition (9.21)
The subgroup of Sn consisting of the even permutations of n
letters is the alternating group An on n letters.

Example

1. A3 has 3!/2 = 3 elements. They are id, (1, 2, 3), and
(1, 3, 2).

2. A4 has 4!/2 = 12 elements. They are id, 8 3-cycles
(1, 2, 3), (1, 3, 2), . . ., and (1, 2)(3, 4), (1, 3)(2, 4), and
(1, 4)(2, 3).



Homework

Do Problems 10, 12, 13, 18, 27, 29, 34, 39 of Section 9.



PART - A- unit 1

1. A trivial subgroup consists of ___________
a) Identity element
b) Coset
c) Inverse element
d) Ring
View Answer

Answer: a
Explanation: Let G be a group under a binary operation * and a subset H of G is called a
subgroup of G if H forms a group under the operation *. The trivial subgroup of any group
is the subgroup consisting of only the Identity element.

2. Minimum subgroup of a group is called _____________
a) a commutative subgroup
b) a lattice
c) a trivial group
d) a monoid
View Answer

Answer: c
Explanation: The subgroups of any given group form a complete lattice under inclusion
termed as a lattice of subgroups. If o is the Identity element of a group(G), then the trivial
group(o) is the minimum subgroup of that group and G is the maximum subgroup.

3. Let K be a group with 8 elements. Let H be a subgroup of K and H<K. It is known that the
size of H is at least 3. The size of H is __________
a) 8
b) 2
c) 3
d) 4

Answer: d
Explanation: For any finite group G, the order (number of elements) of every subgroup L
of G divides the order of G. G has 8 elements. Factors of 8 are 1, 2, 4 and 8. Since given
the size of L is at least 3(1 and 2 eliminated) and not equal to G(8 eliminated), the only size
left is 4. Size of L is 4.

4. __________ is not necessarily a property of a Group.
a) Commutativity
b) Existence of inverse for every element
c) Existence of Identity
d) Associativity



Answer: a
Explanation: Grupoid has closure property; semigroup has closure and associative; monoid
has closure, associative and identity property; group has closure, associative, identity and
inverse; the abelian group has group property and commutative.

5. A group of rational numbers is an example of __________
a) a subgroup of a group of integers
b) a subgroup of a group of real numbers
c) a subgroup of a group of irrational numbers
d) a subgroup of a group of complex numbers
View Answer

Answer: b
Explanation: If we consider the abelian group as a group rational numbers under binary
operation + then it is an example of a subgroup of a group of real numbers.

6. Intersection of subgroups is a ___________
a) group
b) subgroup
c) semigroup
d) cyclic group
View Answer

Answer: b
Explanation: The subgroup property is intersection closed. An arbitrary (nonempty)
intersection of subgroups with this property, also attains the similar property.

7. The group of matrices with determinant _________ is a subgroup of the group of invertible
matrices under multiplication.
a) 2
b) 3
c) 1
d) 4
View Answer

Answer: c
Explanation: The group of real matrices with determinant 1 is a subgroup of the group of
invertible real matrices, both equipped with matrix multiplication. It has to be shown that
the product of two matrices with determinant 1 is another matrix with determinant 1, but
this is immediate from the multiplicative property of the determinant. This group is usually
denoted by(n, R).

8. What is a circle group?
a) a subgroup complex numbers having magnitude 1 of the group of nonzero complex
elements



b) a subgroup rational numbers having magnitude 2 of the group of real elements
c) a subgroup irrational numbers having magnitude 2 of the group of nonzero complex
elements
d) a subgroup complex numbers having magnitude 1 of the group of whole numbers
View Answer

Answer a

9. A normal subgroup is ____________
a) a subgroup under multiplication by the elements of the group
b) an invariant under closure by the elements of that group
c) a monoid with same number of elements of the original group
d) an invariant equipped with conjugation by the elements of original group

Answer: d
Explanation: A normal subgroup is a subgroup that is invariant under conjugation by any
element of the original group that is, K is normal if and only if gKg-1=K for any g belongs to
G Equivalently, a subgroup K of G is normal if and only if gK=Kg for any g belongs to
G.Normal subgroups are useful in constructing quotient groups and in analyzing
homomorphisms.
10. Two groups are isomorphic if and only if __________ is existed between them.
a) homomorphism
b) endomorphism
c) isomorphism
d) association
View Answer

(a) Answer: c
Explanation: Two groups M and K are isomorphic (M ~= K) if and only if there exists an
isomorphism between them. An isomorphism f:M -> K between two groups M and K is a
mapping which satisfies two conditions: 1) f is a bijection and 2) for every x,y belongs to M,
we have f(x*My) = f(x) * Kf(y).

11. Two conjugate subgroups are
Centralizer

Normal
Homomorphic
Isomorphic
12. Automorphism and inner automorphism of a group G are
Abelian
Conjugate
Normal
None of the option given



13. Every subgroup of a abelian group is
Equivalent
Center
Conjugate
normal
14. The intersection of any collection of normal subgroups of a group is

Equivalent
abelian
normal
Not abelian

15. Equivalence relation between subgroups of a group is a relation
Isomorphic
Conjugacy
Homomorphic
Isomorphic and conjugacy

Part B

76. The set A(G) of all automorphism of a group is
None of the option given
Not group
Group
Normal sub group

77. Every group of order P6 where P is a prime number is
Normal
Cyclic
Abelian
Conjugate

78. Any two conjugate subgroups have same
None of the option given
Order
Order and center
center

79. Automorphism of a finite group is
Abelian
Normal
Finite
infinite
80. Group obtained by the direct product of sylow - p group is
Normal
Abelian
Center



commutator

81.The group Zm×Zn is cyclic if
(a) m n = 1 (b) m + n = 1 (c) g.c.d(m, n) = 1 (d) l.c.m(m,n) = 1

82. The number of conjugate classes of Q8 is
(a) 8 (b) 4 (c) 7 (d) 5

83.The number of groups of order 49 is
(a) 4 (b) 1 (c) 7 (d) 2

84. The number of elements of order 4 in Z2×Z4 is
(a) 8 (b) 4 (c) 6 (d) 2

85.The number of conjugacy classes of elements of order 4 in S3 is
(a) 6 (b) 1 (c) 0 (d) 2

86.What is the largest order of any element in U(900):
(a) 900 (b) 40 (c) 60 (d) 100

1. The number of permissible cycle types in S5 is
(a) 7 (b) 4 (c) 5 (d) None

2.The number of 3-sylow subgroups of group of order 25 is
(a) 1 (b) 3 (c) 0 (d) 5

3.The group Zm×Zn is cyclic if
(a) m n = 1 (b) m + n = 1 (c) g.c.d(m, n) = 1 (d) l.c.m(m,n) = 1

4. The number of conjugate classes of Q8 is
(b) 8 (b) 4 (c) 7 (d) 5

Give the conjugacy classes and the class equation for Q8. [Hint: Let Q8 act on itself by
conjugation. Then the conjugacy classes are the distinct orbits, and the class equation is given
by the orders of these classes. The class equation is something like: “8 = 1 + 1 + 1 + 2 + 3”.]
Solution. Since Z(Q8) = {1, −1}, we have O1 = {1} and O−1 = {−1}. [Moreover, these are
the only orbits, or conjugacy classes in this case, that have only one element.] Observe that
for all x, y ∈ Q8, we have (−x) · y · (−x) −1 = −1 · x · y · (−1 · x) −1 = −1 · x · y · x
−1 · (−1)−1 = −1 · x · y · x −1 · −1 = x · y · x −1 [since −1 ∈ Z(Q8)]. This makes things
easier to compute, and one gets: Oi = {i, −i}, Oj = {j, −j}, Ok = {k, −k}, Hence the class
equation is: 8 = 1 + 1 + 2 + 2 + 2

5. The number of groups of order 49 is
(b) 4 (b) 1 (c) 7 (d) 2



6. The number of elements of order 4 in Z2×Z4 is
(b) 8 (b) 4 (c) 6 (d) 2
Since Z4 has φ(4) = 2 elements of order 4, it follows that Z2⊕ Z4, and hence Aut(Z20),
has 4 elements of order 4. On the other hand, since 4 · (x, y) = (0,0) for every (x, y)
∈ Z2⊕ Z4, Lagrange's theorem tells us that the possible orders of elements are 1, 2 or 4.
7. The number of simple groups of order 60 is
(a) 1 (b) 10 (c) 60 (d) 6

8. The number of conjugacy classes of elements of order 4 in S3 is
(b) 6 (b) 1 (c) 0 (d) 2

So S3 has three conjugacy classes: {(1)}, {(12),(13),(23)}, {(123),(132)}.

9. What is the largest order of any element in U(900):
(b) 900 (b) 40 (c) 60 (d) 100

10. If G is an abelian group of order 20, then the number of possible isomorphism classes of
G is

(a) 2 (b) 6 (c) 5 (d) 20

11. The number of sylow 3-subgroups of A4 is
(a) 1 (b) 24 (c) 4 (d) 5

12. If G is an abelian group of order 60, then number of sylow 5-subgroups of G is
(b) 10 (b) 9 (c) 60 (d) 6



Part- A- unit 2
16. Which of the following is abelian
S4
S5
S3
S2

17. Let G be a finite group. Let H be a subgroup of G. Then which of the following divedes
the order of G
Index of H
Order of G
Order of H
All the given options are correct

18. Let D4 = { <a,b>; a4 = b2 = (ab)2 = 1 ) } be a dihedral group of order 8. then which of
the following is a subgroup of D4.
{ <a,b>; b2 = 1 ) }
{ <a,b>; (ab)2 = 1 ) }
{ <a3,b>; (a3b)2 = 1 ) }
{ <a,b>; a4 = b2 = 1 ) }

19. Let An be the set of all even permutatios of Sn isa subgroup of Sn. Then order of An
is
n!
n+ 1/2

n!/2
n! / 3

20. If X and Y are two sets, then X Ռ (XՍY)’ =0
X

XՌY
Y
Ø

21. Let G be a cyclic group of order 24. then order of a9 is

4
6
2
8

22. Any group G can be embedded in a group of bijective mappings of certain sets is a
statement of

Lagrange’s theorem
Isomorphism theorem
Cauchy’s theorem
Caley’s theorem



23. The symmetries of rectangle form a
Permutation group of order 3, S3
Dihedral group of order 8
optic group
kleins 4 group D4

24. The union of all positive even and all positive odd integers is
Z
Z+
W
N

25. The set of cube roots of unity is a subgroup of
R
R+
C
C-{0}

26. If n(U) = 700, n(A) = 200, n(B)=300 and n(AՌB)=100 then n( AI Ռ BI ) =?
400
240
600
300

27. In a group of even order there at least _____ elements of order 2.
2
1
3

None of the options given

28. Let G be a cyclic group. Then which of the following is cyclic
Homomorphc of G
Centre of G
All of the given option
Subgroup of G

29. In S4 group of permutation, number of even permutation is
16
12
24
4

30. The group Sn is called
None of the given options



Symmetric group of degree n
Polynomial group of degree n
Dihidral group of degree n

Part B= unit 2

86. If a group is neither periodic nor torsion free then G is
Mixed group
Symmetric group
Infinite group
Free group

87. Let G be a cyclic group of order 10. the number of subgroups of G is
2
4
5
10

88. Suppose that n(A) = 3 and n(B) = 6 then what can be minimum number of elements
6
9
3
18

89. Ø: R+ -> R is an isomorphism. Then for all x ℇ R+ which of the following is true.
Ø(x) = log(x)
Ø(x) = x
Ø(x) = x2 + 1
Ø(x) = tan(x)

90 which of the following is cyclic group

Z
R
C
Q

90. Number of non- empty subsets of the set { 1,2,3,4}

14
16
15
17

91. Let G be a group and a, b ℇ G then order of a-1 =



b-1
b
bab-1
ab

92. R+ is a group of non - zero positive real number under multiplication. Then which of the
following group under addition is isomorphic to R+
Q
Z
C
R

93. Let X has n elements. The set Sn of all permutations of X is a group with respect to
mappings
Composition
Addition
Multiplication
inverse

94. The group in which every element except the identity element has infinite order is called
Locally infinite
All of these options
Torsion free
A-Periodic

95. Which of the following is even permutation
1 2 3 4
2 3 1 4

None of the option given
1 2 3 4
2 4 1 3

1 2 3 4
2 1 4 3



Unit 3- MCQ- RINGS- I MSC - ALGEBRA

1. The integer modulo n

2 points

forms a ring for any natural number n
forms a ring if n is prime
is always an integral domain
is not an integral domain if n is prime

2. Z[i] is

2 points

an integral domain
a field
a non-commutative ring
a commutative ring but not an integral domain

3. For n ≥ 2, the n-by-n matrices with coefficients in R forms

2 points

a commutative ring

a non-commutative ring

a commutative ring but not an integral domain

a non commutative ring having no divisor of zero

4. H={a+bi+cj+dk: a,b,c,d in R}. Multiplication is defined by i^2=j^2=k^2=-1, ij=-

ji=k, jk=-kj=i, ki=-ik=j. H forms a

2 points

a filed

a commutative ring but not an integral domain

a skew field

a commutative ring having zero divisor

5. Let R be a finite ring and a,b in R such that ab=1. Then
ba=1
ba! = 1
ba=0
ba-1 = 1



6. R be a ring such that a^2=a for each a in R.
R is commutative
R may not be commutative
R is a field
None of these

7. Let R be a ring and a,b,c in R such that ab=ca=1. Then

c=b and a is not a unit
c=b and a is a unit
c != b and a is not a unit
c !=b and a is a unit

8. Let R be a ring and a, b in R such that ab=1. Then

ba is the only idempotent of R
ba and 1-ba are idempotent elements of R
neither ba nor 1-ba is an idempotent of R
1-ba is the only idempotent of R

9. R is a finite commutative ring with more than one element and no divisor of zero. 

Then R is
R is a field
R is not necessarily a field
R is not a integral domain
None of the above

10. 2Z forms

an integral domain
a division ring
a field
a commutative ring

11. R is a ring such that x^3=x for all x in R. Which of the following is true?

2 points

3x=0
4x=0
5x=0
6x=0

12. Which of the following property is possesed by Z and Z_n for all n

2 points

a^2=a implies a=0 or a=1
ab=0 implies a=0 and b=0



a+b=a+c implies b=c
For nonzero a, ab=ac implies b=c

13. In the ring of complex numbers, S={ai | a in Z} is

2 points

a subgroup under addition and a subring
a subgroup under addition but not a subring
neither a subgroup nor a subring
subring but not a subgroup under addition

14. Which of the following is not a subring of ring Z?

2 points

2Z U 3Z
2Z intersection 3Z
2Z
3Z

15. (R,+,.) is a ring

2 points

In (R,.), unique solution exists for ax=b
In (R,.), unique solution exists for ya=b
In (R,+), unique solution exists for ax=b
None of the above

Part B

1. Which of the following is not an integral domain?

2 points

Z[x]

R[x]

Z/6Z

{a+b√2: a,b in Z}

2. Smallest subfield of R containing √5

2 points

{r+s√5: r,s in Z}



{r+s√5: r,s in R}

{r+s√5: r,s in Q}

None of the above

3. How many ideals of Z/12Z are there?

2 points

6

12

5

7

4. If R is commutative ring with unit element, M is an ideal of R and R/M is finite 
integral domain, then
(a) M is a maximal ideal of R
(b) M is not a maximal ideal of R
 (c) M is minimal ideal of R
(d) none of these.

5. If R is a commutative ring, with unit element then
(a) every maximal ideal is prime ideal
(B) every prime ideal is maximal ideal
 (c) every ideal is prime ideal
(d) every ideal is maximal ideal.

6. If R is an integral domain with unit element, then
(a) R[x] is not a commutative ring
 (b) R[x] have a unit element
© any unit in R[x] is unit in R
 (d) any unit in R[x] is not an unit in R.

7. If the ring R has left identity e, and right identity e, then
@ e1= e2

(c) e1 = me2 

(b) e1 \ e2

 (d) none of these.

8. Let R be a ring, U ≠ Ø R is ideal of R then, 
A: U is a subgroup of R under addition 
B: For all u ℇ U and r ℇ R; ur, ru ℇ U
(A) A and B both are true
 (b) only A is true
(c) only B is true
(d) both A and B are false.
9. If  R is a ring in which a4 = a, &forall; a &isin; R, then



(a) R is commutative
(b) R is not commutative
(c) R is zero ring 
(d) none of these.

10.  If the ring R is such that (ab)² = a2 b2, a, b &isin; R, then
(a) R is commutative
(b) R is not commutative
(c) R is zero ring 
(d) none of these.

39. A ring R with binary operation addition is an Abelian group. It with binary 
operation multiplication, ¥ a, b e R, a. b= b.a, then R is
a commutative ring 
(b) integral domain
(c) field
(d) null ring.



1.An integral domain D is of characteristic zero if

(a) ma = 0, a ≠ 0 ℇ D=> m = 0

(b) a = 0, a ≠0 ℇ D=> m ≠ 0

(c) ma = 0, a ≠ 0 ℇ D=> m = a

(d) ma = 0, a ≠ 0 ℇ D=> m ≠ a.     ANS: A

2. A commutative division ring is -

(a) finite integral domain

(b) integral domain

(c) zero ring 

(d) none of these.   ANS: A

3. If  R is a commutative ring with unit element, M is maximum ideal of R iff --

(a) R/M is a field

 (b) M/R is a field

(c) RM is a field 

(d) none of these.   ANS: A

4. If F is a field then its only ideals are, 

A: F, a field itself

B: (0)

(a) A and B are true

(b) A is true, B is false

(c) A is false, B is true

 (d) A and B false.    ANS: A

5. The ring of complex numbers C = {x + iy: x, y are real numbers, i = √-1} is---

(a) not an integral domain

(b) an integral domain



(c) ordered set

(d) none of these.  ANS: B

6. If I is an integral domain and a ≠ 0 ℇ I then

(a) a2 = 0 

(b) a2≥ 0 

(c) a ≠ 0 

(d) none of these   ANS: C

7. Let R and R' be two arbitrary rings, Ø: R→ R' defined as Ø(a) = 0 for all a ℇ R, then

(a) Ø is homomorphism

(b) Ø is automorphism

(c) Øis isomorphism

(d) none of these.   ANS: A

8. If in a ring with unity  (xy)2  = x2y2,  Ɏ  x, y ℇ R, then-----

(a) R is commutative ring

(b) R is an integral domain

(c) R is field

(d)none of these    ANS: B

9. If  I is a ideal in ring R then --

 (a) R/I is a ring

 (b) RI is a ring

(c) R + I is a ring 

(d) none of these.    ANS: A

10. A ring (R, +, .) is said to have zero divisor if-

(a) a, b ℇ R, a. b = 0 => a ≠ 0 or b≠ 0

 (b) a, b ℇ R, a. b = 0 => a = 0 or b= 0



(c) a, b ℇ R, a. b = 0 => a =0 or b≠ 0

 (d) a, b ℇ R, a. b = 0 => a ≠ 0 or b= 0  ANS: a

11. A ring (R, +, ·) is said to have a ring without zero divisor if 

(a) a, b ℇ R, a. b = 0 => a ≠ 0 or b≠ 0

(b) a, b ℇ R, a. b = 0 => a ≠ 0 or b = 0

 (c) a, b ℇ R, a. b = 0 => a = 0 or b = 0

(d) a, b ℇ R, a. b = 0 => a = 0 or b≠ 0  ANS: C

12. An element a ℇ (R, +, .) a ring is nilpotent if for some positive integer n ---

(a) an = 0

 (c) an = a

(c) an = 1

 (d) none of these.  ANS: A

13. A field is a

(a) vector space

(b) integral domain

(c) division ring

(d) commutative division ring.  ANS:D

14. An integral domain D is of finite characteristic, if   aℇ D, there exist     m a 

positive integer such that

(a) ma = 1

(c) ma = 0

(b) ma = a



(d) none of these. ANS: B

15. If the ring R is finite and commutative with unit element, then

(a) every prime ideal is a maximal ideal

(b) every ideal is maximal ideal

(c) every maximal ideal is prime ideal

 (d) (a) and (c) are both true.    ANS: A

Part B

1.Which of the following statements is false?

(a) F[x] is an integral domain

(b) F[x] is Euclidean ring

(c) F[x] is principal ideal ring

(d) F[x] is not a group.  ANS: D

2. If the ring R is an integral domain then

(a) R[x] is an integral domain

(b) R[x] is not an integral domain

(c) R[x] is a field

(d) R[x] is a commutative division ring,  ANS:A

3. If integral domain D is of finite characteristic, then its characteristic is 

(a) odd number

(b) even number

(c) prime number 

(d) natural number.  ANS:C



4. The set of complex number of the form x + iy is a field with respect to ordinary addition and 
multiplication, then the unit and zero elements are respectively

(a) 1 + i0 and 0 + i0

(b) 0 + i and 1 + i.0

(c) 0 and 1

(d) i and -i.    ANS: A

5. If C = {x + iy: x, y ℇ R, i = √-1) is a field with respect to ordinary addition and multiplication, 
then the multiplicative inverse of non-zero element of a + ib ℇ C is

(a) a + b

(b)  (a / a2 + b2)  + i( -b/ a² + b2)

© (a² + ib ) / (a² +b2)

(d) none of these.   ANS: B

6. The following statement is false.

(a) Every field is an integral domain 

(b) Every finite integral domain is a field

 (d) Every integral domain is a field.

(c) Every field is a ring 

  ANS: D

7. A commutative ring R with unity is called integral domain if a, b ℇ R-

(a) ab = 0 => a ≠0, b ≠0

(b) ab = 0   => a = 0 (or)  b = 0

(c) ab = 0 =>a = b

(d) none of these.  ANS: B

8. Check the correct statement

 (a) Every subgroup of a cyclic group is cyclic



 (b) If G is an infinite cyclic group, then G has exactly two generators and G is isomorphic to the 
additive group of integers.

(c) Every finite group of composite order possesses proper subgroups.

(d) all of the above.   ANS: D

9. Degree of Q (√2,√3) over Q where is the field of rational numbers is

(a) 4

(c) 1

(b) 3

(d) 2   ANS: A

10. The relation between the fields Q(√2) and Q (3 + V2) where Q is the field of rational

numbers is

(a) Q (√2) + Q(3 + √2)=0

(b) Q (√2) = Q (3 + √2)

(c) Q (√2) * Q (3 + √2) = 0

(d) Q(√2)   /  Q(3 + √2) = 0   ANS: B



Unit 5- I msc - MCQ- Algebra
1.  Let {v1, v2, … , vn} be independent vectors in a vector space V:

A) α1v1 + α2v2 + … + αnvn = 0 where not all the scalars αi are zero.
B) If dim V = n then {v1, v2, … , vn} spans V.
C) Some vi is a linear combination of the others.
D) There exists ij such that vi = αvj for some scalar α.

2.  Let {u, v, w, z} be independent vectors in a vector space V.
A) {u + v, v + w, w + z, z + u} spans V.
B) {u + v, v + w, w + z, z + u} is independent.
C) Span {u + v,v + w, w + z,z + u} is contained in span {u, v, w z}.
D) {u + v, v + w, w + z, z + u} is a basis of V.

3. Let {v1, v2, … , vn} be dependent, nonzero vectors in a vector space V.
A) There exists ij such that vi = kvj for some scalar k.
B) {v1} is dependent.
C) Span {v1, v2, …, vn} has dimension smaller than n.
D) {vi, vj} is independent for some i  ≠ j.

4.  Let denote a basis of M2 2.
A) B  must contain an invertible matrix.
B) B  cannot contain a matrix A such that A² = 0.
C) If X is in R 2   and Ax = 0 for every A in B, then x = 0.
D) B  must contain a symmetric matrix.

5.  Let {A1, A2, …, An} be an independent set of matrices in Mn n, n  ≥ 2.
A) {A1, A2, … , An} spans Mn n.
B) {A1T, A2T, … , AnT}  is independent.
C) A1 + A2 + … + An = 0.
D) {A1, A2,… An-1, B} is independent where B = A1 + A2 + … + An-1.

6. Let L/K be a finite extension of fields. Which of the following assertions are correct:
A. If the characteristic of K is zero, then L/K is normal.
B. If the characteristic of K is zero, then L/K is separable.
C. If L/K is normal, then L/K is a Galois extension.
D. If the characteristic of K is positive, then L/K is normal if and only if it is separable.

Answer:
• (A) is not correct (counterexample: Q(√3 2)/Q is not normal).
• (B) is correct (result from 1st semester)
• (C) is not correct (if L/K is not separable; counterexample Fp(T
1/p)/F(T)).
• (D) is not correct (counterexample: Fp(T1/p)/Fp(T) is normal but not separable).

2. Let L/K be a finite extension of fields. Which of the following assertions are correct:

A. If L = K(x), where x is a root of a separable polynomial in K[X], then L/K is separable.
B. There exists x  L such that L = K(x).∈
C. For any embedding σ of K in an algebraic closed-field K¯ , there exists τ : L → K¯
which extends σ.

Answer:
• (A) is correct (result from 1st semester)
• (B) is not correct in general (result from 1st semester, example is Fp(X1/p, Y 1/p).)



• (C) is correct (result from 1st semester).

3. Is it true that if K is a finite field, then any finite extension L/K is a Galois extension?
What about any algebraic extension?
A. This is correct because any finite extension of K is a finite field,

B. Any extension of finite fields is Galois by a result from the class.
C. This is not the case for algebraic extensions with the definition in class because such extensions 
may be of infinite degree.
D. All the option given are correct

Answer: This is correct because any finite extension of K is a finite field, and any
extension of finite fields is Galois by a result from the class. This is not the case for
algebraic extensions with the definition in class because such extensions may be of
infinite degree. (With proper definitions, in fact, any algebraic extension of a finite
field is Galois).

4. Let K be a field, K¯ an algebraic closure of K and P  K[X] a non-constant polynomial.∈
Let L  K¯ denote the splitting field of P in K¯ . Which of the following assertions are⊂
correct:

A. The extension L/K is a normal extension.
B. If x  K¯ is a root of P, then L = K(x).∈
C. The extension L/K is a Galois extension.
D. If the polynomial P is irreducible, then L/K is a Galois extension.
E. If the characteristic of K is zero, then L/K is a Galois extension.

Answer:
• (A) is correct (one of basic example of normal extension)
• (B) is not correct, because a single root of P might not be enough (counterexample:
K = Q, P = X3 − 2; then Q(
√3
2) is not the splitting field of P).
• (C) is not always correct (only if P is separable; counterexample is K = Fp(T),
P = Xp − T).
• (D) is not always correct (only if P is separable; same counterexample).
• (E) is correct (because L/K is always separable in that case).

5. Let K be a field, K¯ an algebraic closure of K and L  K¯ a finite extension of K such⊂
that L/K is a Galois extension. Let K  E  L be an intermediate extension. Which⊂ ⊂
of the following assertions are correct:

A. The extension L/E is a Galois extension.
B. The extension E/K is a normal extension.
C. The extension E/K is a separable extension.

Answer:
• (A) is correct (basic result from Galois correspondance)
• (B) is not correct (counterexample: K = Q, L splitting field of X3−2, E = Q(√3 2);
the E/Q is not normal).
• (C) is correct (subextensions of separable extensions are separable, as follows for
instance from the characterization using separability of minimal polynomials).

6. Let K be a field, K¯ an algebraic closure of K and L  K¯ a finite extension of K such⊂
that L/K is a Galois extension, and let G be its Galois group. Which of the following
assertions are correct:



A. For any subgroup H of G, the intermediate extension E = LH  is a normal extension of K.
B. Two subgroups H1 and H2 of G are equal if and only if LH1 = LH2.
C. Any subgroup H of G is the Galois group of some extension E/K for some E  L.⊂
D. Any subgroup H of G is the Galois group of some extension L/E for some E  L.⊂

Answer:
• (A) is not correct (E = LH is normal over K if and only if H is a normal subgroup
of K)
• (B) is correct (injectivity of the map H → LH in the Galois correspondance)
• (C) is not correct (counterexample: if G = S3 is the symmetric group and H is
generated by a cycle of length 3, so that H has order 3, then an intermediate
E with Gal(E/K) = H would correspond to a normal subgroup K < G with
[S3 : K] = [L : E] = 2, but one can see easily that there is no normal subgroup of
order 2 in S3)
• (D) is correct (Galois correspondance: one can take E = LH since H = Gal(L/LH))

7. Let K be a field, K¯ an algebraic closure of K and L  K¯ a finite extension of K such⊂
that L/K is a Galois extension, and let G be its Galois group. Let x  L be given and∈
σ0  G a non-trivial element. Which of the following assertions are correct:∈

A. If σ0(x) = x, then x  K.∈
B. If G is cyclic and σ0(x) = x, then x  K.∈
C. The element  ∑σ G∈ σ(x)2        belongs to K.
D. If the set of all σ(x), for σ ranging over G, contains at most two elements, then
[K(x) : K] ≤ 2.

Answer:
• (A) is not correct (by Galois correspondance, x  K if and only if σ(x) = x for∈
all σ  G; so σ∈ 0(x) = x does not imply x  K unless σ∈ 0 generates G)
• (B) is not correct (although G is cyclic, it might be that σ0 is not a generator)
• (C) is correct (by Galois correspondance, one checks by reordering the sum that
the sum y indicated satisfies τ (y) = y for all τ  G, so that y  L∈ ∈ G = K).
• (D) is correct (the assumption implies that the separable degree of K(x)/K is at
most 2, since the roots of the minimal polynomial P of x are among the values
σ(x), by transitivity of the action of the Galois group of the splitting field of P
on the set of roots).

8. Let K be a field, K¯ an algebraic closure of K and L  K¯ a finite extension of K of⊂
degree 2. Which of the following assertions are correct:
A. The extension L/K is separable.
B. The extension L/K is normal.
C. If the characteristic of K is zero, then there exists y  L such that L = K(y) and∈
y2  K∈ ×.
D.  Both the answers - The extension L/K is normal.  &   If the characteristic of K is zero, then there 
exists y  L such that L = K(y) and  y∈ 2  K∈ ×.

Answer:
• (A) is not correct (counterexample if F2(√T)/F2(T))
• (B) is correct (result from the class)
• (C) is correct (result from th

9. A Ring is said to be commutative if it also satisfies the property
a) monoid



b)associative
c) Commutativity of addition

d) Commutativity of multiplication.

View Answer

Answer: d
Explanation:  A Ring is  said to be commutative if  it  also satisfies  the
Commutativity of multiplication.

10.An ‘Integral Domain’ is

a) semigroup under + and  .

b) monoid under + and  .

c) Ring without zero diviser

d) none of the option given

Answer: c
Explanation:An ‘Integral Domain’ satisfies 

11. For the group Sn of all permutations of n distinct symbols, what is the
number of elements in Sn?
a) n
b) n-1
c) 2n
d) n!
View Answer

Answer: d
Explanation:  There  there  are  n  distinct  symbols  there  will  be  n!
elements.

12. For the group Sn of all  permutations of n distinct symbols,  Sn is an
abelian group for all values of n.
a) statement given is True
b) statement given is False

1. a is correct since For n>2 it does not form a Abelian Group.

2. a & b both are wrong since For n>2 it does not form a Abelian Group.

3. b is correct since For n>2 it does not form a Abelian Group.



4. b is wrong since For n>2 it does not form a Abelian Group.

Answer: b
Explanation: For n>2 it does not form a Abelian Group.

13. Is S a ring from the following multiplication and addition tables?

+ a b x a b

a a b a a a

b b a b a b

a) Yes
b) No
c) Can’t Say
d) Insufficient Data
View Answer

Answer: a
Explanation: S is a ring as it satisfies the properties G-i to R-iii.

14. Does the set of residue classes (mod 3) form a group with respect to
modular addition?
a) Yes, The identity element is 0
b) No
c) Can’t Say
d) Insufficient Data
View Answer

Answer: a
Explanation: Yes. The identity element is 0, and the inverses of 0, 1, 2
are respectively 0, 2, 1.

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1



15. If  f(x)=x7+x5+x4+x3+x+1 and g(x)=x3+x+1, find f(x) x g(x).
a) x12 + x5 + x3 + x2 + x + 1
b) x10 + x4 + 1
c) x10 + x4 + x + 1
d) x7 + x5 + x + 1
View Answer

Answer: c
Explanation: Perform Modular Multiplication.

PART B  

1. If  f(x)=x7+x5+x4+x3+x+1 and g(x)=x3+x+1, find the quotient of f(x) /
g(x).

a) x4+x3+1
b) x4+1
c) x5+x3+x+1
d) x3+x2

View Answer

Answer: b
Explanation: Perform Modular Division.

2. Primitive Polynomial is also called a ____
i) Perfect Polynomial
ii) Prime Polynomial
iii) Irreducible Polynomial
iv) Imperfect Polynomial

a) ii) and iii)
b) only iii)
c) iv) and ii)
d) None
View Answer

Answer: a
Explanation: Irreducible polynomial is also called a prime polynomial or
primitive polynomial.

3. Which of the following are irreducible polynomials?
i) X4+X3

ii) 1
iii) X2+1
iv) X4+X+1

a) i) and ii)
b) only iv)
c) ii) iii) and iv)



d) All of the options
View Answer

Answer: d
Explanation: All of the mentioned are irreducible polynomials.

4. Find the HCF/GCD of x6+x5+x4+x3+x2+x+1 and x4+x2+x+1.
a) x4+x3+x2+1
b) x3+x2+1
c) x2+1
d) x3+x2+1
View Answer

Answer: b
Explanation:  Use  Euclidean  Algorithm  and  find  the  GCD.  GCD  =
x3+x2+1.

5. On multiplying (x5 + x2 + x) by (x7 + x4 + x3 + x2 + x) in GF(28) with
irreducible polynomial (x8 + x4 + x3 + x + 1) we get
a) x12+x7+x2

b) x5+x3+x3

c) x5+x3+x2+x
d) x5+x3+x2+x+1
View Answer

Answer: d
Explanation: Multiplication gives us (x12 + x7 + x2) mod (x8 + x4 + x3 +
x + 1).
Reducing this via modular division gives us, (x5+x3+x2+x+1)

6.   Find the minimum polynomial of the matrix  

2 1 0 0

0 2 0 0

0 0 2 0

0 0 0 5

1) (t-2)3 (t-5)        3) t3+t2       2) (t-2)2 (t-5)   4) none of these
159. If  0  is an eigen value of T if and only if  T  is

1. A singular  3) non-singular  2) null matrix  4) none of these

7. Find the minimal polynomial m(t) of the       matrix 

A=   

 λ α

0  λ

    for a ≠ 0. 
1) (t- λ)     3)(t- λ) 3  2)  (t- λ) 2   4) none of these
8. Let a, b, c  be elements of a field F and



0 0 c

1 0 b

0 1 a

find the minimal polynomial 
1) x3 + ax2 + bx + c  3) ax3- bx2 - cx + 1   2) x3 - ax2 - bx - c    4) none of these

9. A vector space V over F is said to be ---------if there is defined for any two ordered pair of vectors 
u,veV an element (u, v) in F such that

i) (u, v) = (v, u)--

ii) (u,u) ≥ 0 and (u,u)=0 iff u=0

iii) (au+bv, w)=a(u,v)+b(v,w)   for all u,v,w and  a,b ℇ F

1) inner product space   2) subspace  3) dual space   4) none of these

10. Every finite dimentional inner product space has an orthonormal basis

1. Cauchy - schwarz theorem

2. Gram-schmidt orthogonalisation process

3. Riemann theorem

4. None of these
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